Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Virol ; 97(3): e0001123, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2286211

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the worldwide coronavirus disease 2019 (COVID-19) pandemic. The novel SARS-CoV-2 ORF8 protein is not highly homologous with known proteins, including accessory proteins of other coronaviruses. ORF8 contains a 15-amino-acid signal peptide in the N terminus that localizes the mature protein to the endoplasmic reticulum. Oligomannose-type glycosylation has been identified at the N78 site. Here, the unbiased molecular functions of ORF8 are also demonstrated. Via an immunoglobulin-like fold in a glycan-independent manner, both exogenous and endogenous ORF8 interacts with human calnexin and HSPA5. The key ORF8-binding sites of Calnexin and HSPA5 are indicated on the globular domain and the core substrate-binding domain, respectively. ORF8 induces species-dependent endoplasmic reticulum stress-like responses in human cells exclusively via the IRE1 branch, including intensive HSPA5 and PDIA4 upregulation, with increases in other stress-responding effectors, including CHOP, EDEM and DERL3. ORF8 overexpression facilitates SARS-CoV-2 replication. Both stress-like responses and viral replication induced by ORF8 have been shown to result from triggering the Calnexin switch. Thus, ORF8 serves as a key unique virulence gene of SARS-CoV-2, potentially contributing to COVID-19-specific and/or human-specific pathogenesis. IMPORTANCE Although SARS-CoV-2 is basically regarded as a homolog of SARS-CoV, with their genomic structure and the majority of their genes being highly homologous, the ORF8 genes of SARS-CoV and SARS-CoV-2 are distinct. The SARS-CoV-2 ORF8 protein also shows little homology with other viral or host proteins and is thus regarded as a novel special virulence gene of SARS-CoV-2. The molecular function of ORF8 has not been clearly known until now. Our results reveal the unbiased molecular characteristics of the SARS-CoV-2 ORF8 protein and demonstrate that it induces rapidly generated but highly controllable endoplasmic reticulum stress-like responses and facilitates virus replication by triggering Calnexin in human but not mouse cells, providing an explanation for the superficially known in vivo virulence discrepancy of ORF8 between SARS-CoV-2-infected patients and mouse.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , Calnexin/genetics , SARS-CoV-2/genetics , Virus Replication
2.
Microb Pathog ; : 105924, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2243793

ABSTRACT

Piglet diarrhea caused by the porcine epidemic diarrhea virus (PEDV) is a common problem on pig farms in China associated with high morbidity and mortality rates. In this study, three PEDV isolates were successfully detected after the fourth blind passage in Vero cells. The samples were obtained from infected piglet farms in Jilin (Changchun), and Shandong (Qingdao) Provinces of China and were designated as CH/CC-1/2018, CH/CC-2/2018, and CH/QD/2018. According to the analysis of the complete S protein gene sequence, the CH/CC-1/2018 and CH/CC-2/2018 were allocated to the G2b branch, while CH/QD/2018 was located in the G1a interval and was closer to the vaccine strain CV777. Successful detection and identification of the isolated strains were carried out using electron microscopy and indirect immunofluorescence. Meanwhile, animal challenge experiments and viral RNA copies determination were used to compare the pathogenicity. The results showed that CH/CC-1/2018 in Changchun was more pathogenic than CH/QD/2018 in Qingdao. In conclusion, the discovery of these new strains is conducive to the development of vaccines to prevent the pandemic of PEDV, especially that the CH/CC-1/2018, and CH/CC-2/2018 were not related to the classical vaccine strain CV777.

3.
Industrial Crops and Products ; 187:115305, 2022.
Article in English | ScienceDirect | ID: covidwho-1914507

ABSTRACT

The global ban on plastics and the COVID-2019 epidemic have accelerated the demand for eco-friendly disposable dishware. As an alternative to plastic, the characterization of low-cost, widely-sourced, and sustainable plant fibers for degradable, eco-friendly dishware is urgently needed. In this study, bamboo fiber dishware (BFD) and poly lactic acid (PLA) dishware were investigated by exploring how the properties of their microstructures affect their mechanical properties. Thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) were used to characterize the thermal decomposition behavior and dynamic viscoelasticity of both dishware types. Their modulus reductions were predicted using the accelerating creep mode, according to the time-temperature equivalence principle. The results showed that (1) the eco-friendly BFD was light weight and strong. Its specific strength, specific modulus were 4.50 and 3.09 times higher than those of PLA dishware, respectively. The efficient three-dimensional structure formed by the bamboo fibers and held together by hydrogen bonding played an important role in maintaining the excellent physical and mechanical properties. (2) The BFD and PLA dishware exhibited glass transition temperatures of 63.2 °C and 54.7 °C, respectively, according to the loss modulus curves, and their activation energies were 70.76 kJ/mol and 132.53 kJ/mol, respectively. Compared to the PLA dishware, the thermal decomposition behavior and storage modulus of the BFD were showed a lower sensitivity to temperature. (3) The time-temperature principle could be applied to the long-term creep prediction of BFD and PLA dishware. It showed that BFD exhibited a greater creep resistance in protecting food.

4.
PLoS Negl Trop Dis ; 15(3): e0009227, 2021 03.
Article in English | MEDLINE | ID: covidwho-1110082

ABSTRACT

Since its first emergence in 2012, cases of infection with Middle East respiratory syndrome coronavirus (MERS-CoV) have continued to occur. At the end of January 2020, 2519 laboratory confirmed cases with a case-fatality rate of 34.3% have been reported. Approximately 84% of human cases have been reported in the tropical region of Saudi Arabia. The emergence of MERS-CoV has highlighted need for a rapid and accurate assay to triage patients with a suspected infection in a timely manner because of the lack of an approved vaccine or an effective treatment for MERS-CoV to prevent and control potential outbreaks. In this study, we present two rapid and visual nucleic acid assays that target the MERS-CoV UpE and N genes as a panel that combines reverse transcription recombinase polymerase amplification with a closed vertical flow visualization strip (RT-RPA-VF). This test panel was designed to improve the diagnostic accuracy through dual-target screening after referencing laboratory testing guidance for MERS-CoV. The limit of detection was 1.2×101 copies/µl viral RNA for the UpE assay and 1.2 copies/µl viral RNA for the N assay, with almost consistent with the sensitivity of the RT-qPCR assays. The two assays exhibited no cross-reactivity with multiple CoVs, including the bat severe acute respiratory syndrome related coronavirus (SARSr-CoV), the bat coronavirus HKU4, and the human coronaviruses 229E, OC43, HKU1 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, the panel does not require sophisticated equipment and provides rapid detection within 30 min. This panel displays good sensitivity and specificity and may be useful to rapidly detect MERS-CoV early during an outbreak and for disease surveillance.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Molecular Diagnostic Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription , Saudi Arabia/epidemiology , Sensitivity and Specificity , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL